Перевод: с русского на все языки

со всех языков на русский

virtual state

  • 1 виртуальное состояние

    Русско-английский политехнический словарь > виртуальное состояние

  • 2 виртуальное состояние

    Русско-английский физический словарь > виртуальное состояние

  • 3 виртуальное состояние

    Русско-английский словарь по электронике > виртуальное состояние

  • 4 виртуальное состояние

    Русско-английский словарь по радиоэлектронике > виртуальное состояние

  • 5 виртуальное состояние

    Русско-английский синонимический словарь > виртуальное состояние

  • 6 виртуальное состояние

    virtual state мат.

    Русско-английский научно-технический словарь Масловского > виртуальное состояние

  • 7 возможное состояние

    possible state, probable state, virtual state

    Русско-английский физический словарь > возможное состояние

  • 8 виртуальное государство

    International relations: virtual state

    Универсальный русско-английский словарь > виртуальное государство

  • 9 виртуальное состояние

    Mathematics: virtual state

    Универсальный русско-английский словарь > виртуальное состояние

  • 10 фактическая глава

    Русско-английский военно-политический словарь > фактическая глава

  • 11 фактический

    Русско-английский словарь Смирнитского > фактический

  • 12 фактический

    факти́ческое доказа́тельство — actual proof

    факти́ческое положе́ние де́ла — the actual state of affairs

    факти́ческая сторона́ — the facts pl

    факти́ческий материа́л — facts pl, evidence

    факти́ческие хозя́ева — virtual masters

    факти́ческая да́та платежа́ — actual / effective date of payment

    факти́ческое призна́ние (рд.) полит., юр.de facto recognition (of)

    Новый большой русско-английский словарь > фактический

  • 13 фактический

    Русско-английский словарь по общей лексике > фактический

  • 14 значение

    * * *
    значе́ние с.
    1. ( размер величины) value, magnitude
    вычисля́ть значе́ние — compute [calculate] a value
    задава́ть значе́ние — pre-assign [preset, prescribe, predetermine, specify] a value
    нормирова́ть значе́ние — normalize a value
    ожида́ть значе́ние — expect a value
    определя́ть [оце́нивать] значе́ние — estimate a value
    принима́ть значе́ние
    1. (в расчётах, проектах) adopt [specify] a value
    2. (о какой-л. величине) take (on) [assume] a value
    уточня́ть значе́ние — ( определять окончательное значение) finalize a value; ( проверять) verify a value
    2. ( важность) significance
    3. (смысл, содержание) meaning, sense
    абсолю́тное значе́ние — absolute value, magnitude
    амплиту́дное значе́ние — peak [crest] value
    асимптоти́ческое значе́ние — asymptotic value
    бифуркацио́нное значе́ние — bifurcational value
    виртуа́льное значе́ние — virtual value
    гла́вное значе́ние — principal value
    грани́чное значе́ние — boundary value
    двоя́кое значе́ние — bifurcational value
    действи́тельное значе́ние — actual [real] value
    де́йствующее значе́ние — effective [root-mean-square, rms] value
    допусти́мое значе́ние — legitimate [admissible, allowed, allowable] value
    еди́нственное значе́ние — unique value
    запрещё́нное значе́ние — forbidden [unpermitted] value
    и́стинное значе́ние — стат., мат. ideal value; ( в логике) truth value
    значе́ние и́стинности — truth value
    коне́чное значе́ние — finite value
    максима́льное значе́ние
    1. maximum value
    2. эл. peak value
    мгнове́нное значе́ние — instantaneous value
    нача́льное значе́ние — initial value
    ненулево́е значе́ние — non-zero value
    нулево́е значе́ние — zero value
    оконча́тельное значе́ние — final value
    предвари́тельное значе́ние — tentative value
    преде́льное значе́ние — limiting value
    произво́льное значе́ние — arbitrary value
    равнове́сное значе́ние — equilibrium value
    разрешё́нное значе́ние — allowed [permitted] value
    разря́дное значе́ние — place value
    со́бственное значе́ние — characteristic [proper] value, eigenvalue; ( матрицы) latent root
    средневзве́шенное значе́ние — weighted mean value
    сре́днее значе́ние — mean, mean [average] value
    сре́днее значе́ние по всем состоя́ниям — value averaged over all states
    сре́днее арифмети́ческое значе́ние — arithmetical average, arithmetical mean
    сре́днее геометри́ческое значе́ние — geometrical mean
    среднеквадрати́чное значе́ние — root-mean-square [effective, rms] value
    стациона́рное значе́ние — steady-state [stationary] value
    установи́вшееся значе́ние — steady-state [stationary] value
    уточнё́нное значе́ние ( в методе последовательных приближений) — improved value
    характе́рное значе́ние — representative value
    целочи́сленное значе́ние — integral value
    ча́стное значе́ние — particular [special] value
    чи́сленное значе́ние — numerical value
    находи́ть чи́сленное значе́ние алгебраи́ческого выраже́ния — evaluate an (algebraic) expression
    значе́ние шкалы́, коне́чное — full scare value
    эффекти́вное значе́ние — effective [root-mean-square, rms] value

    Русско-английский политехнический словарь > значение

  • 15 переход

    bridge, ( из одного состояния в другое) conversion, ( к подпрограмме) call, change, crossing, crossover, crossroad, ( с одного языка на другой или с регистра на регистр печатающего устройства) escape вчт., handover, pass, passage матем., run мор., ( элемента в металл шва) recovery, ( в цикле) step, transfer, transition, traversal, traverse
    * * *
    перехо́д м.
    1. transition
    перехо́д от … к — in going from … to …
    сво́йства меня́ются при перехо́де от углеро́да к графи́ту — the properties change in going from carbon to graphite
    2. (часть плавания, напр. от порта до порта) passage
    агрега́тный перехо́д — change of state, transition from a state to another, transition between states
    агрега́тный перехо́д жи́дкость — газ — liquid-gas transition
    агрега́тный перехо́д жи́дкость — пар — liquid-vapour transition
    волново́дный перехо́д — waveguide junction
    волново́дный, пла́вный перехо́д — tapered (waveguide) transition (section)
    перехо́д в опера́ции ( элемент операции) — step, operation element
    перехо́д в полупроводнико́вом прибо́ре — transition region, transition layer; junction
    перехо́д в полупроводнико́вом прибо́ре, впла́вленный — alloyed junction
    перехо́д в полупроводнико́вом прибо́ре выпрямля́ющий — rectifying junction
    перехо́д в полупроводнико́вом прибо́ре, вы́ращенный — grown junction
    перехо́д в полупроводнико́вом прибо́ре, диффузио́нный — diffused junction
    перехо́д в полупроводнико́вом прибо́ре, невыпрямля́ющий — nonrectifying [ohmic] junction
    перехо́д в полупроводнико́вом прибо́ре, неодноро́дный — heterojunction
    перехо́д в полупроводнико́вом прибо́ре, обратносмещё́нный — back-biased [reverse-biased] junction
    перехо́д в полупроводнико́вом прибо́ре, одноро́дный — homojunction
    перехо́д в полупроводнико́вом прибо́ре, оми́ческий — nonrectifying [ohmic] junction
    перехо́д в полупроводнико́вом прибо́ре, пла́вный — graded junction
    перехо́д в полупроводнико́вом прибо́ре, прямосмещё́нный — forward-biased junction
    перехо́д в полупроводнико́вом прибо́ре, ре́зкий — abrupt junction
    перехо́д в полупроводнико́вом прибо́ре, сварно́й — welded junction
    перехо́д в полупроводнико́вом прибо́ре, экспоненциа́льный — exponential(ly graded) junction
    перехо́д в полупроводнико́вом прибо́ре, электро́нно-ды́рочный — p-n- junction
    перехо́д в полупроводнико́вом прибо́ре, электрохими́ческий — electrochemical junction
    перехо́д в полупроводнико́вом прибо́ре, эпитаксиа́льный — epitaxial [epitaxially grown] junction
    перехо́д в сече́нии, ре́зкий — abrupt [sudden] change in cross-section
    перехо́д к друго́му основа́нию ( логарифма) — change of the base
    перехо́д к преде́лу мат. — limit(ing) process, passing [passage] to the limit
    монта́жный перехо́д кфт. — scene transition, cut
    перехо́д на трубопрово́де ( переходник) — reducer
    перехо́д от изображе́ния к оригина́лу ( в преобразовании Лапласа-Фурье) — step of going from a transform to the original time function
    пешехо́дный перехо́д — ( над проезжей частью улицы) pedestrian overpass; ( под проезжей частью улицы) pedestrian underpass, брит. (pedestrian) subway
    тунне́льный перехо́д — tunnelling
    тунне́льный, междузо́нный перехо́д — band-to-band tunnelling
    фа́зовый перехо́д — change of phase, phase transition, transition from a phase to another, transition between phases
    фа́зовый перехо́д второ́го ро́да — second-kind (phase) transition
    фа́зовый перехо́д ме́жду жи́дкими фа́зами — liquid-liquid transition
    фа́зовый перехо́д ме́жду твё́рдыми фа́зами — solid-solid transition
    фа́зовый перехо́д пе́рвого ро́да — first-kind (phase) transition
    фа́зовый перехо́д твё́рдое вещество́ — газ — solid-gas transition
    фа́зовый перехо́д твё́рдое вещество́ — жи́дкость — solid-liquid transition
    перехо́д характери́стики ( характеристической кривой) — change [reversal] of sign
    перехо́д ЭВМ — transfer, jump
    перехо́д ЭВМ, безусло́вный — unconditional transfer
    перехо́д ЭВМ по переполне́нию — jump on overflow, overflow jump
    перехо́д ЭВМ, усло́вный — conditional transfer, branch (operation)
    усло́вный перехо́д выполня́ется по нулю́ — conditional transfer of control is based on the zero criterion
    усло́вный перехо́д осуществля́ется по зна́ку числа́ — conditional transfer of control depends on the sign of a number
    энергети́ческий перехо́д ( из одного энергетического состояния уровня в другой) — transition (between energy levels [energy states])
    энергети́ческий, безызлуча́тельный перехо́д — nonradiative [radiationless, Auger] transition
    энергети́ческий, виртуа́льный перехо́д — virtual transition
    энергети́ческий, вы́нужденный перехо́д — induced [forced] transition
    энергети́ческий, дозво́ленный перехо́д — allowed transition
    энергети́ческий, запрещё́нный перехо́д — forbidden transition
    энергети́ческий, затормо́женный перехо́д — hindered [unfavoured] transition
    энергети́ческий, захва́тный перехо́д — capture transition
    энергети́ческий, излуча́тельный перехо́д — radiative transition
    энергети́ческий, индуци́рованный перехо́д — induced transition
    энергети́ческий, ква́нтовый перехо́д — quantum transition, quantum jump
    энергети́ческий, колеба́тельный перехо́д — vibrational transition
    энергети́ческий, междузо́нный перехо́д — band-to-band transition
    энергети́ческий, облегчё́нный перехо́д — favoured transition
    энергети́ческий перехо́д Оже́ — Auger [nonradiative, radiationless] transition
    энергети́ческий, опти́ческий перехо́д — optical transition
    энергети́ческий, разрешё́нный перехо́д — allowed transition
    энергети́ческий, резона́нсный перехо́д — resonance transition
    энергети́ческий, самопроизво́льный перехо́д — spontaneous transition
    энергети́ческий, сверхизлуча́тельный перехо́д — superradiant transition
    энергети́ческий перехо́д с вы́сшего на ни́жний у́ровень — downward transition
    энергети́ческий перехо́д с ни́жнего на вы́сший у́ровень — upward transition
    я́дерный перехо́д — nuclear transition

    Русско-английский политехнический словарь > переход

  • 16 широковещательное объектно-ориентированное сообщение о событии на подстанции

    1. GOOSE
    2. generic object oriented substation event

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > широковещательное объектно-ориентированное сообщение о событии на подстанции

  • 17 виртуальное промежуточное состояние

    Универсальный русско-английский словарь > виртуальное промежуточное состояние

  • 18 виртуальные входы

    Programming: virtual inputs (виртуального конечного автомата; см. Modeling software with finite state machines: a practical approach by Ferdinand Wagner et al. (2006))

    Универсальный русско-английский словарь > виртуальные входы

  • 19 виртуальный вход

    Programming: virtual input (виртуального конечного автомата; см. Modeling software with finite state machines: a practical approach by Ferdinand Wagner et al. (2006))

    Универсальный русско-английский словарь > виртуальный вход

  • 20 виртуальный выход

    Programming: virtual output (виртуального конечного автомата; см. Modeling software with finite state machines: a practical approach by Ferdinand Wagner et al. (2006))

    Универсальный русско-английский словарь > виртуальный выход

См. также в других словарях:

  • Virtual State — Infobox Album | Name = Virtual State Type = Album Artist = Richard H. Kirk Released = 1993 Recorded = Genre = Length = Label = Warp Records Producer = Richard H. Kirk Last album = None This album = Virtual State (1993) Next album = The Number of… …   Wikipedia

  • virtual state — virtualioji būsena statusas T sritis fizika atitikmenys: angl. virtual state vok. virtueller Zustand, m rus. виртуальное состояние, n pranc. état virtuel, m …   Fizikos terminų žodynas

  • state of siege — A condition of suspension of civil law or its subordination to military law • • • Main Entry: ↑siege * * * ˌstate of ˈsiege f37 [state of siege] noun a situation in which the government limits people s freedom to enter or leave a city, town or… …   Useful english dictionary

  • Virtual particle — In physics, a virtual particle is a particle that exists for a limited time and space, introducing uncertainty in their energy and momentum due to the Heisenberg Uncertainty Principle. (Indeed, because energy and momentum in quantum mechanics are …   Wikipedia

  • Virtual synchrony — is an interprocess messaging passing (sometimes called event queue management) technology. Virtual synchrony systems allow programs running in a network to organize themselves into process groups , and to send messages to groups (as opposed to… …   Wikipedia

  • State of Play (Conference series) — State of Play is a conference series put on by the Institute for Information Law Policy at New York Law School which deals with the intersection of virtual worlds, games and the lawPast ConferencesThere have been five State of Play conferences to …   Wikipedia

  • Virtual work — on a system is the work resulting from either virtual forces acting through a real displacement or real forces acting through a virtual displacement. In this discussion, the term displacement may refer to a translation or a rotation, and the term …   Wikipedia

  • Virtual visitation — is the use of electronic communication tools to provide contact between a parent and his or her children as part of a parenting plan or custody order. Virtual visitation includes many forms of communication, such as e mail, instant messaging, and …   Wikipedia

  • Virtual Router Redundancy Protocol — (VRRP) is a non proprietary redundancy protocol described in RFC 3768 designed to increase the availability of the default gateway servicing hosts on the same subnet. This increased reliability is achieved by advertising a virtual router (an… …   Wikipedia

  • Virtual reality in telerehabilitation — is a method used first in the training of musculoskeletal patients using asynchronous patient data uploading, and an internet video link. Subsequently, therapists using virtual reality based telerehabilitation prescribe exercise routines via the… …   Wikipedia

  • Virtual volunteering — is a term describing a volunteer who completes tasks, in whole or in part, offsite from the organization being assisted, using the Internet and a home, school, telecenter or work computer. Virtual volunteering is also known as online volunteering …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»